

Short Baseline Reactor Experiments elsewhere

Antonin Vacheret University of Oxford, UK

WINP 2015, BNL, Brookhaven NY 5th February 2015

Aim of this talk

- Give an overview of the current and planned short baseline experiments
- Focus on research reactor experiments

Reactors

- Research reactors
 - HEU fuel
 - most have compact core
 - good fraction of reactor off data
 - closest distance possible but at cost of high gamma-ray flux
 - constraint on site availability varies
 - Power known to 2-5%

- Power Reactor experiments
 - LEU fuel
 - Extended core limits physics sensitivity
 - reactor off time limited
 - close stand off difficult
 - High neutrino flux
 - Access difficult
 - Power known to 0.5%
- All experiments are limited by systematic effects of at least a few %

The reactor anomaly

- small effect so aim for % level precision
 - close to the surface
 - close to reactor cores

New Reactor experiments

Current and planned experiments

Tech		Reactor	P [MW]	L (m)	M (tonnes)	status		
Neutrino-4 (Ru)	LS+Gd	SM-3	90	6-12	1.5	first run		
Nucifer (Fr)	LS+Gd	OSIRIS	70	7	0.8	running		
SoLid (UK/B/Fr)	PVT + ⁶ LiF:ZnS	SCK•CEN BR2	45-80	5.5-11	1.44/2.88	enter 1st run		
DANSS (Ru)	PS + Gd	KNPP	3000	9.7-12.2	0.9	prototype run construction		
STEREO (Fr/Ge)	LS+Gd	ILL-HFR	57	8.9-12	1.75	construction		
Korean project	LS + Gd/ ⁶ Li	Hanaro Hanbit	30 2800	6-?	~1	R&D prototype		

Neutrino-4

SM-3 Reactor Dimitrograd, Russia

- Dedicated site at SM-3
- Probe oscillation effect with distance $(1/R^2)$
- homogenous detector design, 1.5 tonnes
- Challenging background conditions
 - 60 tonnes of shielding
- First run with 1 detector unit (400L)

Background studies

- Extensive survey of backgrounds vs distance
 - found variations up to 14%

Thermal neutrons flux (s ⁻¹ cm ⁻²)	Fast neutrons flux (s ⁻¹ cm ⁻²)	Place of measurment
(0.34±0.07) 10 ⁻⁵	(4.4±0.5) 10 ⁻⁵	Inside
(17.7±1.2) 10 ⁻⁵	(69±2) 10 ⁻⁵	On the top
Shielding factor	Shielding factor	
$K_{\underline{th}} = 53$	$K_{\text{fast}} = 16$	

Gamma-rays at various distance on axis

Cosmics spectrum

400L first results & sensitivity

distance to active zone (m)

start 3 MeV, stop 3 MeV

- first measurement in 1/R²
 - IBD efficiency 15%, ~130 candidates/day
- next phase:
 - full scale system
 - active shielding around passive shielding

Nucifer

- project oriented to reactor monitoring
- homogenous detector
- 105 days, ~300 candidates /day
- Very challenging gamma-ray background
 - S:B \sim 1/12 accidentals S:B \sim 1/3 correlated
- Backgrounds dominates the uncertainties

								Accidental rate									Correlated rate								
Reactor OFF								$\left(75\pm1 ight)/day$									$(1063\pm10)/{ m day}$								
	Reactor ON								$\left(3793\pm1\right)/day$								$(1384\pm15)/{ m day}$								
									Nucifer @ Osiris																
	500,0																								
	450,0																								
4	400,0	Ι							Ι	I													÷		
Aep	350,0	ľ			I		I		Ī	I				ī	Ι	Ţ			Ι				1		
Veutrino rate (\day	300,0		- -	-1-	: -	- -	•	١.			.	ļ.			j.		÷	•	Ĺ	<u>.</u>					
ě	250,0			٠	1		I					Ī	ļ				Î			Ī	•	I		•	
Neut	200,0		-	1									I												
_	150,0													— Pro		edi	edictio	on							
	100,0	• Data																							
	50,0														- Pr	edi	ctio	n w	ith	read	ctor	and	oma	ly	
	0,0	L	_	_	_	_	_	_	_	_											_	_			
		1	2	3	4	5	6	7	8	D:	10 ata	11 tak	12 ing	13 peri	od a	15	16	17	18	19	20	21	22	23	
													.0												

STEREO

40x90x90 cm3 cell size

- LS +Gd with coarse segmentation
- good overburden
- but around other neutron experiments
- challenging background conditions
 - heavy shielding
- Prototype built and optical studies started
- deployment planed for end of 2015

Level 10m67 on axis with reactor **Confinement building**

SoLid

- SCK•CEN BR2 MTR reactor
 - beam ports unused
 - 2.88 tonnes highly segmented detector
- reconfigurable baseline
- 10 mwe overburden
- main phase planed for mid2016

12

BR2 reactor

- MTR reactor
 - in core irradiation facility
- Operates in 45-80 MW range
- 6 cycles per year
- effective core size matches ILL size
- Remarkably low rate and energy of gamma-rays
 - higher S:B ratio possible
- no evidence of reactor ON neutrons

SoLid concept

- Neutron / gamma-ray discrimination from pulse
 - distinctive response for prompt and delayed signal
 - neutron used to trigger event read out
- Voxelisation of target volume
 - neutron captured in neighboring cube increasing localisation of IBD event
- Eres $\sim 17\%$ and < 5cm position resolution

Status

2014 - 2015

prototypeNEMENIX 8kg64 voxels, 32 chan.

SoLid Module 1 (SM1)
 288kg
 9 Detector planes
 2304 voxels, 288 chan.

Large scale system TRL 3-5

1. demonstrate scalability and test production schedule

2. demonstrate segmentation capability

3. do some physics?

- NEMENIX taking data
- SM1 under commissioning
- aim to take data this month before reactor shut down

Summary

- The job is not done!
- several effort in Europe and elsewhere to address the reactor anomaly
 - but a small number of research reactors with very different environments
 - requires current generation experiment precision but in much more challenging environment
 - A lot of expertise needed in very different areas
- improving on the knowledge of the reactor spectrum is a requirement
 - again not all experiment can do it
- US has research reactors and extensive experience in this area
- exploring potential collaboration between Europe and US could change substantially the state of the competition